GCF and LCM Calculator Logo

What is the Greatest Common Factor of 19825 and 19834?

Greatest common factor (GCF) of 19825 and 19834 is 1.

GCF(19825,19834) = 1

We will now calculate the prime factors of 19825 and 19834, than find the greatest common factor (greatest common divisor (gcd)) of the numbers by matching the biggest common factor of 19825 and 19834.

GCF Calculator and
and

How to find the GCF of 19825 and 19834?

We will first find the prime factorization of 19825 and 19834. After we will calculate the factors of 19825 and 19834 and find the biggest common factor number .

Step-1: Prime Factorization of 19825

Prime factors of 19825 are 5, 13, 61. Prime factorization of 19825 in exponential form is:

19825 = 52 × 131 × 611

Step-2: Prime Factorization of 19834

Prime factors of 19834 are 2, 47, 211. Prime factorization of 19834 in exponential form is:

19834 = 21 × 471 × 2111

Step-3: Factors of 19825

List of positive integer factors of 19825 that divides 19825 without a remainder.

1, 5, 13, 25, 61, 65, 305, 325, 793, 1525, 3965

Step-4: Factors of 19834

List of positive integer factors of 19834 that divides 19825 without a remainder.

1, 2, 47, 94, 211, 422, 9917

Final Step: Biggest Common Factor Number

We found the factors and prime factorization of 19825 and 19834. The biggest common factor number is the GCF number.
So the greatest common factor 19825 and 19834 is 1.

Also check out the Least Common Multiple of 19825 and 19834