What is the Least Common Multiple of 11968 and 11972?
Least common multiple or lowest common denominator (lcd) can be calculated in two way; with the LCM formula calculation of greatest common factor (GCF), or multiplying the prime factors with the highest exponent factor.
Least common multiple (LCM) of 11968 and 11972 is 35820224.
LCM(11968,11972) = 35820224
Least Common Multiple of 11968 and 11972 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 11968 and 11972, than apply into the LCM equation.
GCF(11968,11972) = 4
LCM(11968,11972) = ( 11968 × 11972) / 4
LCM(11968,11972) = 143280896 / 4
LCM(11968,11972) = 35820224
Least Common Multiple (LCM) of 11968 and 11972 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 11968 and 11972. First we will calculate the prime factors of 11968 and 11972.
Prime Factorization of 11968
Prime factors of 11968 are 2, 11, 17. Prime factorization of 11968 in exponential form is:
11968 = 26 × 111 × 171
Prime Factorization of 11972
Prime factors of 11972 are 2, 41, 73. Prime factorization of 11972 in exponential form is:
11972 = 22 × 411 × 731
Now multiplying the highest exponent prime factors to calculate the LCM of 11968 and 11972.
LCM(11968,11972) = 26 × 111 × 171 × 411 × 731
LCM(11968,11972) = 35820224
Related Least Common Multiples of 11968
- LCM of 11968 and 11972
- LCM of 11968 and 11973
- LCM of 11968 and 11974
- LCM of 11968 and 11975
- LCM of 11968 and 11976
- LCM of 11968 and 11977
- LCM of 11968 and 11978
- LCM of 11968 and 11979
- LCM of 11968 and 11980
- LCM of 11968 and 11981
- LCM of 11968 and 11982
- LCM of 11968 and 11983
- LCM of 11968 and 11984
- LCM of 11968 and 11985
- LCM of 11968 and 11986
- LCM of 11968 and 11987
- LCM of 11968 and 11988
Related Least Common Multiples of 11972
- LCM of 11972 and 11976
- LCM of 11972 and 11977
- LCM of 11972 and 11978
- LCM of 11972 and 11979
- LCM of 11972 and 11980
- LCM of 11972 and 11981
- LCM of 11972 and 11982
- LCM of 11972 and 11983
- LCM of 11972 and 11984
- LCM of 11972 and 11985
- LCM of 11972 and 11986
- LCM of 11972 and 11987
- LCM of 11972 and 11988
- LCM of 11972 and 11989
- LCM of 11972 and 11990
- LCM of 11972 and 11991
- LCM of 11972 and 11992