What is the Least Common Multiple of 19665 and 19680?
Least common multiple or lowest common denominator (lcd) can be calculated in two way; with the LCM formula calculation of greatest common factor (GCF), or multiplying the prime factors with the highest exponent factor.
Least common multiple (LCM) of 19665 and 19680 is 25800480.
LCM(19665,19680) = 25800480
Least Common Multiple of 19665 and 19680 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 19665 and 19680, than apply into the LCM equation.
GCF(19665,19680) = 15
LCM(19665,19680) = ( 19665 × 19680) / 15
LCM(19665,19680) = 387007200 / 15
LCM(19665,19680) = 25800480
Least Common Multiple (LCM) of 19665 and 19680 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 19665 and 19680. First we will calculate the prime factors of 19665 and 19680.
Prime Factorization of 19665
Prime factors of 19665 are 3, 5, 19, 23. Prime factorization of 19665 in exponential form is:
19665 = 32 × 51 × 191 × 231
Prime Factorization of 19680
Prime factors of 19680 are 2, 3, 5, 41. Prime factorization of 19680 in exponential form is:
19680 = 25 × 31 × 51 × 411
Now multiplying the highest exponent prime factors to calculate the LCM of 19665 and 19680.
LCM(19665,19680) = 32 × 51 × 191 × 231 × 25 × 411
LCM(19665,19680) = 25800480
Related Least Common Multiples of 19665
- LCM of 19665 and 19669
- LCM of 19665 and 19670
- LCM of 19665 and 19671
- LCM of 19665 and 19672
- LCM of 19665 and 19673
- LCM of 19665 and 19674
- LCM of 19665 and 19675
- LCM of 19665 and 19676
- LCM of 19665 and 19677
- LCM of 19665 and 19678
- LCM of 19665 and 19679
- LCM of 19665 and 19680
- LCM of 19665 and 19681
- LCM of 19665 and 19682
- LCM of 19665 and 19683
- LCM of 19665 and 19684
- LCM of 19665 and 19685
Related Least Common Multiples of 19680
- LCM of 19680 and 19684
- LCM of 19680 and 19685
- LCM of 19680 and 19686
- LCM of 19680 and 19687
- LCM of 19680 and 19688
- LCM of 19680 and 19689
- LCM of 19680 and 19690
- LCM of 19680 and 19691
- LCM of 19680 and 19692
- LCM of 19680 and 19693
- LCM of 19680 and 19694
- LCM of 19680 and 19695
- LCM of 19680 and 19696
- LCM of 19680 and 19697
- LCM of 19680 and 19698
- LCM of 19680 and 19699
- LCM of 19680 and 19700