What is the Least Common Multiple of 20220 and 20238?
Least common multiple or lowest common denominator (lcd) can be calculated in two way; with the LCM formula calculation of greatest common factor (GCF), or multiplying the prime factors with the highest exponent factor.
Least common multiple (LCM) of 20220 and 20238 is 68202060.
LCM(20220,20238) = 68202060
Least Common Multiple of 20220 and 20238 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 20220 and 20238, than apply into the LCM equation.
GCF(20220,20238) = 6
LCM(20220,20238) = ( 20220 × 20238) / 6
LCM(20220,20238) = 409212360 / 6
LCM(20220,20238) = 68202060
Least Common Multiple (LCM) of 20220 and 20238 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 20220 and 20238. First we will calculate the prime factors of 20220 and 20238.
Prime Factorization of 20220
Prime factors of 20220 are 2, 3, 5, 337. Prime factorization of 20220 in exponential form is:
20220 = 22 × 31 × 51 × 3371
Prime Factorization of 20238
Prime factors of 20238 are 2, 3, 3373. Prime factorization of 20238 in exponential form is:
20238 = 21 × 31 × 33731
Now multiplying the highest exponent prime factors to calculate the LCM of 20220 and 20238.
LCM(20220,20238) = 22 × 31 × 51 × 3371 × 33731
LCM(20220,20238) = 68202060
Related Least Common Multiples of 20220
- LCM of 20220 and 20224
- LCM of 20220 and 20225
- LCM of 20220 and 20226
- LCM of 20220 and 20227
- LCM of 20220 and 20228
- LCM of 20220 and 20229
- LCM of 20220 and 20230
- LCM of 20220 and 20231
- LCM of 20220 and 20232
- LCM of 20220 and 20233
- LCM of 20220 and 20234
- LCM of 20220 and 20235
- LCM of 20220 and 20236
- LCM of 20220 and 20237
- LCM of 20220 and 20238
- LCM of 20220 and 20239
- LCM of 20220 and 20240
Related Least Common Multiples of 20238
- LCM of 20238 and 20242
- LCM of 20238 and 20243
- LCM of 20238 and 20244
- LCM of 20238 and 20245
- LCM of 20238 and 20246
- LCM of 20238 and 20247
- LCM of 20238 and 20248
- LCM of 20238 and 20249
- LCM of 20238 and 20250
- LCM of 20238 and 20251
- LCM of 20238 and 20252
- LCM of 20238 and 20253
- LCM of 20238 and 20254
- LCM of 20238 and 20255
- LCM of 20238 and 20256
- LCM of 20238 and 20257
- LCM of 20238 and 20258