What is the Least Common Multiple of 20940 and 20958?
Least common multiple or lowest common denominator (lcd) can be calculated in two way; with the LCM formula calculation of greatest common factor (GCF), or multiplying the prime factors with the highest exponent factor.
Least common multiple (LCM) of 20940 and 20958 is 73143420.
LCM(20940,20958) = 73143420
Least Common Multiple of 20940 and 20958 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 20940 and 20958, than apply into the LCM equation.
GCF(20940,20958) = 6
LCM(20940,20958) = ( 20940 × 20958) / 6
LCM(20940,20958) = 438860520 / 6
LCM(20940,20958) = 73143420
Least Common Multiple (LCM) of 20940 and 20958 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 20940 and 20958. First we will calculate the prime factors of 20940 and 20958.
Prime Factorization of 20940
Prime factors of 20940 are 2, 3, 5, 349. Prime factorization of 20940 in exponential form is:
20940 = 22 × 31 × 51 × 3491
Prime Factorization of 20958
Prime factors of 20958 are 2, 3, 7, 499. Prime factorization of 20958 in exponential form is:
20958 = 21 × 31 × 71 × 4991
Now multiplying the highest exponent prime factors to calculate the LCM of 20940 and 20958.
LCM(20940,20958) = 22 × 31 × 51 × 3491 × 71 × 4991
LCM(20940,20958) = 73143420
Related Least Common Multiples of 20940
- LCM of 20940 and 20944
- LCM of 20940 and 20945
- LCM of 20940 and 20946
- LCM of 20940 and 20947
- LCM of 20940 and 20948
- LCM of 20940 and 20949
- LCM of 20940 and 20950
- LCM of 20940 and 20951
- LCM of 20940 and 20952
- LCM of 20940 and 20953
- LCM of 20940 and 20954
- LCM of 20940 and 20955
- LCM of 20940 and 20956
- LCM of 20940 and 20957
- LCM of 20940 and 20958
- LCM of 20940 and 20959
- LCM of 20940 and 20960
Related Least Common Multiples of 20958
- LCM of 20958 and 20962
- LCM of 20958 and 20963
- LCM of 20958 and 20964
- LCM of 20958 and 20965
- LCM of 20958 and 20966
- LCM of 20958 and 20967
- LCM of 20958 and 20968
- LCM of 20958 and 20969
- LCM of 20958 and 20970
- LCM of 20958 and 20971
- LCM of 20958 and 20972
- LCM of 20958 and 20973
- LCM of 20958 and 20974
- LCM of 20958 and 20975
- LCM of 20958 and 20976
- LCM of 20958 and 20977
- LCM of 20958 and 20978