What is the Least Common Multiple of 25254 and 25258?
Least common multiple or lowest common denominator (lcd) can be calculated in two way; with the LCM formula calculation of greatest common factor (GCF), or multiplying the prime factors with the highest exponent factor.
Least common multiple (LCM) of 25254 and 25258 is 318932766.
LCM(25254,25258) = 318932766
Least Common Multiple of 25254 and 25258 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 25254 and 25258, than apply into the LCM equation.
GCF(25254,25258) = 2
LCM(25254,25258) = ( 25254 × 25258) / 2
LCM(25254,25258) = 637865532 / 2
LCM(25254,25258) = 318932766
Least Common Multiple (LCM) of 25254 and 25258 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 25254 and 25258. First we will calculate the prime factors of 25254 and 25258.
Prime Factorization of 25254
Prime factors of 25254 are 2, 3, 23, 61. Prime factorization of 25254 in exponential form is:
25254 = 21 × 32 × 231 × 611
Prime Factorization of 25258
Prime factors of 25258 are 2, 73, 173. Prime factorization of 25258 in exponential form is:
25258 = 21 × 731 × 1731
Now multiplying the highest exponent prime factors to calculate the LCM of 25254 and 25258.
LCM(25254,25258) = 21 × 32 × 231 × 611 × 731 × 1731
LCM(25254,25258) = 318932766
Related Least Common Multiples of 25254
- LCM of 25254 and 25258
- LCM of 25254 and 25259
- LCM of 25254 and 25260
- LCM of 25254 and 25261
- LCM of 25254 and 25262
- LCM of 25254 and 25263
- LCM of 25254 and 25264
- LCM of 25254 and 25265
- LCM of 25254 and 25266
- LCM of 25254 and 25267
- LCM of 25254 and 25268
- LCM of 25254 and 25269
- LCM of 25254 and 25270
- LCM of 25254 and 25271
- LCM of 25254 and 25272
- LCM of 25254 and 25273
- LCM of 25254 and 25274
Related Least Common Multiples of 25258
- LCM of 25258 and 25262
- LCM of 25258 and 25263
- LCM of 25258 and 25264
- LCM of 25258 and 25265
- LCM of 25258 and 25266
- LCM of 25258 and 25267
- LCM of 25258 and 25268
- LCM of 25258 and 25269
- LCM of 25258 and 25270
- LCM of 25258 and 25271
- LCM of 25258 and 25272
- LCM of 25258 and 25273
- LCM of 25258 and 25274
- LCM of 25258 and 25275
- LCM of 25258 and 25276
- LCM of 25258 and 25277
- LCM of 25258 and 25278