What is the Least Common Multiple of 40699 and 40704?
Least common multiple or lowest common denominator (lcd) can be calculated in two way; with the LCM formula calculation of greatest common factor (GCF), or multiplying the prime factors with the highest exponent factor.
Least common multiple (LCM) of 40699 and 40704 is 1656612096.
LCM(40699,40704) = 1656612096
Least Common Multiple of 40699 and 40704 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 40699 and 40704, than apply into the LCM equation.
GCF(40699,40704) = 1
LCM(40699,40704) = ( 40699 × 40704) / 1
LCM(40699,40704) = 1656612096 / 1
LCM(40699,40704) = 1656612096
Least Common Multiple (LCM) of 40699 and 40704 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 40699 and 40704. First we will calculate the prime factors of 40699 and 40704.
Prime Factorization of 40699
Prime factors of 40699 are 40699. Prime factorization of 40699 in exponential form is:
40699 = 406991
Prime Factorization of 40704
Prime factors of 40704 are 2, 3, 53. Prime factorization of 40704 in exponential form is:
40704 = 28 × 31 × 531
Now multiplying the highest exponent prime factors to calculate the LCM of 40699 and 40704.
LCM(40699,40704) = 406991 × 28 × 31 × 531
LCM(40699,40704) = 1656612096
Related Least Common Multiples of 40699
- LCM of 40699 and 40703
- LCM of 40699 and 40704
- LCM of 40699 and 40705
- LCM of 40699 and 40706
- LCM of 40699 and 40707
- LCM of 40699 and 40708
- LCM of 40699 and 40709
- LCM of 40699 and 40710
- LCM of 40699 and 40711
- LCM of 40699 and 40712
- LCM of 40699 and 40713
- LCM of 40699 and 40714
- LCM of 40699 and 40715
- LCM of 40699 and 40716
- LCM of 40699 and 40717
- LCM of 40699 and 40718
- LCM of 40699 and 40719
Related Least Common Multiples of 40704
- LCM of 40704 and 40708
- LCM of 40704 and 40709
- LCM of 40704 and 40710
- LCM of 40704 and 40711
- LCM of 40704 and 40712
- LCM of 40704 and 40713
- LCM of 40704 and 40714
- LCM of 40704 and 40715
- LCM of 40704 and 40716
- LCM of 40704 and 40717
- LCM of 40704 and 40718
- LCM of 40704 and 40719
- LCM of 40704 and 40720
- LCM of 40704 and 40721
- LCM of 40704 and 40722
- LCM of 40704 and 40723
- LCM of 40704 and 40724