What is the Least Common Multiple of 50364 and 50378?
Least common multiple or lowest common denominator (lcd) can be calculated in two way; with the LCM formula calculation of greatest common factor (GCF), or multiplying the prime factors with the highest exponent factor.
Least common multiple (LCM) of 50364 and 50378 is 1268618796.
LCM(50364,50378) = 1268618796
Least Common Multiple of 50364 and 50378 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 50364 and 50378, than apply into the LCM equation.
GCF(50364,50378) = 2
LCM(50364,50378) = ( 50364 × 50378) / 2
LCM(50364,50378) = 2537237592 / 2
LCM(50364,50378) = 1268618796
Least Common Multiple (LCM) of 50364 and 50378 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 50364 and 50378. First we will calculate the prime factors of 50364 and 50378.
Prime Factorization of 50364
Prime factors of 50364 are 2, 3, 1399. Prime factorization of 50364 in exponential form is:
50364 = 22 × 32 × 13991
Prime Factorization of 50378
Prime factors of 50378 are 2, 25189. Prime factorization of 50378 in exponential form is:
50378 = 21 × 251891
Now multiplying the highest exponent prime factors to calculate the LCM of 50364 and 50378.
LCM(50364,50378) = 22 × 32 × 13991 × 251891
LCM(50364,50378) = 1268618796
Related Least Common Multiples of 50364
- LCM of 50364 and 50368
- LCM of 50364 and 50369
- LCM of 50364 and 50370
- LCM of 50364 and 50371
- LCM of 50364 and 50372
- LCM of 50364 and 50373
- LCM of 50364 and 50374
- LCM of 50364 and 50375
- LCM of 50364 and 50376
- LCM of 50364 and 50377
- LCM of 50364 and 50378
- LCM of 50364 and 50379
- LCM of 50364 and 50380
- LCM of 50364 and 50381
- LCM of 50364 and 50382
- LCM of 50364 and 50383
- LCM of 50364 and 50384
Related Least Common Multiples of 50378
- LCM of 50378 and 50382
- LCM of 50378 and 50383
- LCM of 50378 and 50384
- LCM of 50378 and 50385
- LCM of 50378 and 50386
- LCM of 50378 and 50387
- LCM of 50378 and 50388
- LCM of 50378 and 50389
- LCM of 50378 and 50390
- LCM of 50378 and 50391
- LCM of 50378 and 50392
- LCM of 50378 and 50393
- LCM of 50378 and 50394
- LCM of 50378 and 50395
- LCM of 50378 and 50396
- LCM of 50378 and 50397
- LCM of 50378 and 50398