What is the Least Common Multiple of 5042 and 5060?
Least common multiple or lowest common denominator (lcd) can be calculated in two way; with the LCM formula calculation of greatest common factor (GCF), or multiplying the prime factors with the highest exponent factor.
Least common multiple (LCM) of 5042 and 5060 is 12756260.
LCM(5042,5060) = 12756260
Least Common Multiple of 5042 and 5060 with GCF Formula
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 5042 and 5060, than apply into the LCM equation.
GCF(5042,5060) = 2
LCM(5042,5060) = ( 5042 × 5060) / 2
LCM(5042,5060) = 25512520 / 2
LCM(5042,5060) = 12756260
Least Common Multiple (LCM) of 5042 and 5060 with Primes
Least common multiple can be found by multiplying the highest exponent prime factors of 5042 and 5060. First we will calculate the prime factors of 5042 and 5060.
Prime Factorization of 5042
Prime factors of 5042 are 2, 2521. Prime factorization of 5042 in exponential form is:
5042 = 21 × 25211
Prime Factorization of 5060
Prime factors of 5060 are 2, 5, 11, 23. Prime factorization of 5060 in exponential form is:
5060 = 22 × 51 × 111 × 231
Now multiplying the highest exponent prime factors to calculate the LCM of 5042 and 5060.
LCM(5042,5060) = 22 × 25211 × 51 × 111 × 231
LCM(5042,5060) = 12756260
Related Least Common Multiples of 5042
- LCM of 5042 and 5046
- LCM of 5042 and 5047
- LCM of 5042 and 5048
- LCM of 5042 and 5049
- LCM of 5042 and 5050
- LCM of 5042 and 5051
- LCM of 5042 and 5052
- LCM of 5042 and 5053
- LCM of 5042 and 5054
- LCM of 5042 and 5055
- LCM of 5042 and 5056
- LCM of 5042 and 5057
- LCM of 5042 and 5058
- LCM of 5042 and 5059
- LCM of 5042 and 5060
- LCM of 5042 and 5061
- LCM of 5042 and 5062
Related Least Common Multiples of 5060
- LCM of 5060 and 5064
- LCM of 5060 and 5065
- LCM of 5060 and 5066
- LCM of 5060 and 5067
- LCM of 5060 and 5068
- LCM of 5060 and 5069
- LCM of 5060 and 5070
- LCM of 5060 and 5071
- LCM of 5060 and 5072
- LCM of 5060 and 5073
- LCM of 5060 and 5074
- LCM of 5060 and 5075
- LCM of 5060 and 5076
- LCM of 5060 and 5077
- LCM of 5060 and 5078
- LCM of 5060 and 5079
- LCM of 5060 and 5080